Safe and reliable laboratory chemicals | RBOSCHCO- Chemicals Online
(Application of Silicon Carbide in Abrasives and Cutting Tools)
Silicon carbide is a semiconductor containing silicon and carbon. It is a scarce mineral in nature, masonite. Synthetic SiC powder has been extensively produced since 1893 as an abrasive. Silicon carbide particles can be sintered and bonded together to form tough ceramics, widely used in applications requiring high durability, such as ceramic plates in automotive brakes, clutches, and bulletproof vests. Large silicon carbide single crystals can be grown using the Lely method and cut into gemstones called synthetic mossonite.
The electronic applications of silicon carbide, such as light-emitting diodes (LEDs) and detectors in early radio, were first demonstrated around 1907. SiC is used in semiconductor electronic devices that operate at high temperatures, high pressures, or both.
Preparation method of silicon carbide
The main methods for preparing silicon carbide include reaction sintering, chemical vapor deposition, and physical vapor deposition. Among them, the reaction sintering method is the most commonly used. This method involves mixing silicon and carbon powders and conducting sintering reactions at high temperatures to generate silicon carbide ceramics. The chemical vapor deposition method is the reaction of a gas mixture containing silicon and carbon at high temperatures to generate silicon carbide thin films. The physical vapor deposition method involves evaporating atoms or molecules of silicon and carbon at high temperatures and then reacting at low temperatures to generate silicon carbide nanomaterials.
Pure silicon carbide can be sublimated into silicon, carbon, silicon carbide (SiC2), and silicon carbide (Si2C) high-temperature materials through the Lely process in an argon environment. It can be re-deposited into sheet-like single crystals at 2500 ° C, with sizes up to 2 × 2cm on a slightly cold substrate. This process produces high-quality single crystals, mainly the 6H SiC phase (due to high growth temperature).
The improved Lely process involves induction heating in a graphite crucible to produce larger single crystals with a diameter of 4 inches (10 centimeters), which have a cross-sectional area 81 times larger than traditional Lely processes.
Cubic silicon carbide is typically grown through the more expensive chemical vapor deposition (CVD) process of silane, hydrogen, and nitrogen. Homogeneous and heteroepitaxial SiC layers can be produced using gas and liquid phase methods.
To form complex-shaped SiC, ceramic precursor polymers can be used as precursors to create ceramic products through pyrolysis at temperatures ranging from 1000 to 1100 ° C. The precursor materials for obtaining silicon carbide in this way include polycarbosilane, poly (methyl silane), and polysiloxane. Polymer-derived ceramics, or PDC, are the silicon carbide material obtained through the pyrolysis of pre-ceramic polymers. The pyrolysis of pre-ceramic polymers is usually carried out in an inert atmosphere at relatively low temperatures. Compared to the CVD process, the pyrolysis method is advantageous as polymers can form various shapes before being thermally transformed into ceramics.
Silicon carbide can also be made into wafers using diamond wire saws or laser-cutting single crystals. Silicon carbide is a valuable semiconductor for power electronics.
The Use of Silicon Carbide
In art, due to the durability and low cost of materials, silicon carbide is a popular abrasive in modern gemstones. Its hardness is used in manufacturing for grinding, honing, water jet cutting, sandblasting, and other grinding processes. Silicon carbide particles are laminated onto paper, forming a grip on sandpaper and skateboard.
Silicon carbide is a support and shelf material in high-temperature kilns, such as for firing ceramics, glass fusion, or glass casting. The SiC kiln frame is lighter and more durable than traditional alumina frames.
Siliconized carbon-carbon composite materials are used for high-performance "ceramic" brake discs because they can withstand extreme temperatures. Silicon reacts with graphite in carbon composite materials to form carbon fiber-reinforced silicon carbide (C/SiC). These brake discs are used in road sports cars, supercars, and other performance cars. Silicon carbide is also used as sintering for diesel particulate filters. It is also used as an oil additive [questionable discussion] to reduce friction, emissions, and harmonics.
Application of Silicon Carbide in Other Fields
Mechanical processing field: Silicon carbide can be used for manufacturing cutting tools, abrasive tools, and polishing materials. Due to its high hardness, silicon carbide can be used for machining challenging to-machine materials such as hard alloys and ceramics. In addition, silicon carbide can be used to manufacture mechanical parts such as seals and bearings.
Electronic field: Silicon carbide is an excellent semiconductor material that can manufacture electronic devices, such as power electronic devices, microwave devices, etc. Due to its excellent thermal conductivity, silicon carbide can be used to manufacture high-power electronic devices such as power switches and high-speed trains. In addition, silicon carbide can be used to manufacture optoelectronic devices, such as lasers, detectors, etc.
Aerospace field: Silicon carbide has excellent high-temperature resistance and chemical stability and can be used to manufacture high-temperature components and seals in aerospace vehicles. In addition, silicon carbide can also be used to manufacture high-performance components such as jet engine blades.
Medical field: Silicon carbide has good biocompatibility and non-toxicity and can be used for manufacturing medical devices and biomaterials. For example, silicon carbide can be used to manufacture medical devices such as artificial joints and teeth. In addition, silicon carbide can also be used to manufacture drug carriers for targeted drug delivery and treatment.
Environmental field: Silicon carbide has good adsorption and photocatalytic properties and can be used in environmental governance. For example, silicon carbide can be used as an adsorbent and photocatalyst in water treatment. It can also be used as a photocatalyst in air purifiers to effectively remove harmful substances from the air.
About RBOSCHCO
RBOSCHCO is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for SiC powder, please send an email to: tech@nanotrun.com
(Application of Silicon Carbide in Abrasives and Cutting Tools)